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QUALITATIVE AlYALYSIS OF MOTION OF A HEAVY 
ON A SIWOTH HORIZONTAL PLANE* 

A.P. MAPKBEV and N.K. MOSBCHUK 

SOLID BODY 

The motion of a solid body on a stationary absolutely smooth horizontal surface in 
a gravitational field is considered. The surface that bound6 the body is convex, 
and the body differs little from a dynamically and geometrically symmetric one. This 
difference is defined by the magnitude if the Small parameters e. The unperturbed 
problem (when E=O) is integrabl.e /l/. The basic aim is the investigationofmotron 
for O<e&l. The nondegeneracy of Hamiltonian function of the unpexturbed motionis 
shown and on the basis of Kolmogorov theorem /2,3/ is established that the perpetual 
Closeness Of variables "action"totheir initial values which correspond to condi- 
tional periodic motions in the unperturbed problem. By this is establishedthe small- 
ness of variation of basic geometrical characteristics of the unperturbed motion, 
when the solid body differs little from the geometrically and dynamically symmetric 
one. 

Considerable results have been achieved to the present in solving the problem of exist- 
ence and stability of steady motions of solid bodies and gyrostates on a stationary plane, in 
particular, absolutely smooth one. The steady motions are not necessarily rotation of the 
body about the vertical. Besides, the stability was considered in a strictly nanlinear form- 
ulation. The basic results here were obtained in papers /4-6/. The qualitative analysis of 
motion of a heavy homogeneous triaxial ellipsoid is carried out on a smooth horizontal plane 
/'7/ on the assumption of its closeness to the sphere. 

1. Let UXYZ be a fixed coordinate system with its origin at point 0 of horizontal 
plane OXY on which the body is moving, the 02 axis directed vertically upward, and GZYZ 
the coordinate system rigidly attached to the body. The origin of the attached coordinate 
system is at the center of mass of the body and its axes are directed along its principal 
central axes of inertia, The mutual orientation of the attached and the fixed system of co- 
ordinates is specified by the Euler angles 91% cp. 

The considered mechanical system is holonomic and has five degrees of freedom. As the 
generalized coordinates we take the three Euler angles and two coordinates XGand yrzof the 
center of mass in the system of coordinates OXI% The third coordinate &-the distance of 
the center of mass of the body - is a function of angles 8 and 'p, for a given formof surface 
bounding the body. 

Let m be the mass of the body, g the accelerationof free fall, and A,B and Cthe mom- 
ents of inertia relative to axes Gx, Gy , and Gz, respectively. The kinetic and potential 
energies of the body are as follows: 

il.11 

p = *'sin 6 sin cp -i- #'COS tp, 4 = *,'sin e co9 cp - fYsin cp 
r = tp*eose + 9' 

The generalized coordinates $Xo,Ya are cyclic (ignorable). Hence the prelection of pq 
on the vertical vector of the body kinetic moment relative to point G is constant, asisals 
constant the velocity of projection Qof the center of mass on plane OXY (Fig.1). 

The presence of th'ree cyclic coordinates enable us to reduce the problem of the solid 
body motion the investigation of the system with two degreesoffreedom. Wi*out loss of 

generality, we assume that the velocity of point Qis zero. At the same time we consider pv 
in the Hamilton functions H = H@, 19, pe, PO, pq) as pamete=. 

Let tfie bounding surface of the body differlittlefroma surface of revolution with the 
Gr axis and the body be close to a dynamically symmetric one. It is then possible to set 

&= f(0) + ef, (0, cp), H = A (1 + E) (0 Q e< 11, cud *e Halt0nia-t reduced system is written in 

the form 
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H = H” (R P& Pm? Pd + eH,@, cpl PI39 PIP’ P*7 4 
The unperturbed motion (when e=O ) is the motion of a 

dynamically and geometrically symmetric body, for instance, a 
solid homogeneous body of revolution. The Hamiltonian H, corres- 
ponding to the unperturbed motion is of the form 

Fig.1 

Pa" 
&= 2(A+mp?) + 

(P*- &,~a @)Z Fe" 
2A sin%6 + @%f(@) -i- r (1.21 

where p = p (0) = f f'(0) isthedistance from the tangency point 
P of the body with the plane OXY to point Q. When e = 0 the 
generalized velocities and the moments are linkedby the relations 

(1.3) 

2. Let us consider the unperturbedmotion in more detail. Formula (1.2) implies that in 
unperturbed motion one more coordinate, the angle m, is cyclic. The corresponding momentum 
P,,., projection of the momentum of the body on the axis of symmetry, is constant, and the 

investigation of the unperturbed motion reduces to the consideration of the reduced system 
with only one degree of freedom. The kinetic and potential energies of the reduced systemare 
defined by the formulas 

T,=1/‘e(d+mps)8’s~ s- 
n _ (P*-a$,==w 

2A sin% e + mt!f te) + -f$ (2.1) 

The variation of angle 0 =0(t) is obtained using the integral of energy T, $-l-I, = h= 
const. Denoting by !& the initial value of angle 8, we obtain 

(2.2) 

When 6 -3 0(t) is known, the variation of angles $ =Q(t),cp = q(t) is obtained from (1.3) 
by quadratures. 

Let us first consider such motion of the body when its axis of rotation is not vertical, 
i.e. the angle 8 during the whole time of motion cannot be equal 0 or x. For this it is suf- 
ficient to stipulate pqf fpv It is obvious that h- II, (CJ > 0. and for P*# f PIP the 
quantity h- &(8) becomes negative, if 8+0 or n. Hence angle 6 is included between two 
real roots of equation h- l&(e) = 0 lying between 0 and n. If 8,,& are two different 
(9,> 6,) simple roots of that equation and in the interval between these roots h> l&(O), then 
angle 0 fluctuates between 8, and 0, in conformity with (2.2). The period of these oscilla- 
tions is 

(2.31 

When throughout the time of motion 8 = B. we have a regular precession of a solid body. 
Its center of mass is stationary, andthe angular velocities $,',cp' of rotation of the body 
around the vertical and the axis of symmetry are constant. The point Pof contact of the 
body with the OXY plane describes on the latter a circle with its center at point Q, and 
on the body surface, a circle whose plane is perpendicular to the axis of symmetry of the 
body. In the particular case, when cp' - 0 the body touches the plane with one point of its 
surface. 

If h is fixed, the regular precession is possible only then when 8, is a multiple root 
of equation h- II(@)= 0, i.e. when 0 = B. satisfies the system 

n, (e) = h, il,8 (8) = 0 12.4) 

For any function f(6)it is possible to obtain regular precession with arbitrarily specif- 
ied angle &, of nutation by suitable selection of variables p.+, pe, h. 

Indeed the second of Eqs.(2.4) can be written as follows: 

2~~ = a~,,. & v (a* - 4) pus + 4b, a = (t -t_ co!? f3)/ cos 8 

b = Amgf’ sin 8 @/COS fl 
(2.5) 
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Since l=I>2, by the suitable selection of ptp the radicand of (2.5) can be made positive 
and by that satisfy the second of Eqs.(2.4). While the first of Eqs.(2.4) is satisfied if we 
set ?I = II, (&I). 

As an example, Fig.2 represent the behavior of trajectories of the reduced system in the 
case of ~v#kf,+,, when II,(e) has one localminimum (Fig.Z,a) and when II,(e) has two local 
minima and one local maximum (Fig.2,b). 

Let us briefly consider such motion of the body when its axis of symmetrymaypass through 
the vertical position. When the axis of symmetry may pass the position 8 = 0, thennecessar- 
ily must be satisfied the equality pQ =pID. Opening the indefiniteness in the expression for 
function l&(9), we obtain 

(2.6) 

Since f'(0) sf 0, hence also J&' (0) = 0. This means that there exists steady motionofthe 
body, which is a rotation about the vertically located axis of symmetry at constant angular 
velocity rO. Analyzing the character of the extremum of function (2.6) at-point 0 = 0, and 
taking into account ps = Cr,, we obtain that the sufficient condition of stability of such 
motion with respect to 0 and 8'is the fulfillment of the inequality 

czra -I- ~~~(O)>O f2.7) 

When the sign of this inequality is reversed, we have instability. These conditions con- 
form to the respective results of /4,5/. 

Fig.2 

a b C d e 

Fig.3 

a b c d 

Fig.4 

If the axis of symmetry can 
pass through the position when6 = n 
(a reversal), then pl = -pe. The 
reduced potential energy l&is of 
the form of (2.61, where in the first 
term it is necessary to substitute 
ctg8/2 for tg%! . The condition 

of stability of rotation about the 
vertical is written in the form of 
inequality (2.7) in which the deri- 
vative f” must be calculated for 
0 = x. 

If PO"P0 = 0, then the body 
axis of symmetry can pass during its 
motion through both singular posi- 
tions 8 LO and 8 =s. When pe== 

p9=0, from (1.31 we obtain Ip = 
const,tp = conat, i.e. the body moves 
so that its axis of symmetry is in 
the fixed vertical plane all the 
time. The dependence of the angle 
of nutation on time is obtainedfrom 
(2.2), where it is necessary to set 

n* = wf I@. 
Consider the properties of 

traces of the touching point on the 
plane and on the body surface that 
are not regular precession. If angle 
0 fluctuates between 8, and 8, 

with period T, then + and rp obtain 
during time r some continuous in- 
crements. In that case -the traceof 

contact point on the body surface is contained between two parallel lines, and on the plane 
between two concentric circles, what is demonstrated in Figs.3 and 4. In Fig.3,a a case is 

represented when 'p' does not change its sign; in Fig.3,b q)' vanishes at e-8,; Fig.3,c and 

d correspond to such motions of the body, when in the period T of one of its oscillation 
with respect to the angle 9, 9’ changes its sign, respectively once and twice; Fig.3,e corres- 
ponds to the separatrix in plane a,@'. In Fig.4,a, b and c the quantity @' does not change 
its sign in time 7 changes its sign once, and vanishes for 8~0,; Fig.4,d corresponds to the 

separatrix. 
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3. Subsequently we shall assume that pv# fpP, i.e. that the existence of such body 
motions when its axis of symmetry could pass through the singular positions e=oIx, are 

excluded. Isoenergetic curves H, = censt in the plane 8, pe in principle do not differ from 

respective cumes T, + I& = h in plane e,w. Having eliminated in the consideration asym- 
ptotic motions corresponding to regular precessions of the body, we obtain that the iso- 
energetic curves in plane e,pe are closed and on them Oc e,<e Gee, c n. 

For the investigation of the perturbed motion (0~ eel) it is convenient to introduce 
the canonical variables action, the angle e,cp,pe,plp.~wl,w*,II,II. The variables action are 
specified by the equalities 

(3.1) 

Integration is carried out over closed curves H, = censt. 
In variables wl,wZ,I1,IZ the Hamiltonian of perturbed motion assumes the form 

H = Ho (11, Zsl + df, (I,, I,, wr wd (3.2) 

The perturbation e.H, is of period 2s with respect to variables w1 and w2. The dependence 
on parameters of the problem, including on ptp, is not indicated in (3.2). 

The frequencies of unperturbed motions w((I,,I,) = 8H&Ii(i = i, 2)are analytic functions 
of their arguments. The variables I,, I, when a = 0 are constants and equal to their initial 
values. 

Let us consider the isoenergetic level H, = h = const. On it I, = I,(I,,h), and consequ- 
ently Oi are functions Of variable I,. If the ratio of frequencies wz/ol depends on I2 (i.e. 
is not reducible to a constant), the investigated system is isoenergetically nondegenerate. 
Then according to /2,3/ there is stability of the variables action. This means thatforfairly 
small e in the system with Hamiltonian (3.2) the variables I,,I, perpetually remain close to 
their initial values. 

The condition of nondegeneracy is in this problem satisfied. 
To check the fulfillment of the condition of nondegeneracy, we consider the identity 

Ho (11 (I*, A), 1,) I= h. Differentiating it with respect to I,, as in /8/, we obtain that 

%i% = -aqaI, (3.3) 

From the integral (3.1) we find 

Taking into account (1.2) and (1.3), we obtain from (3.3) and (3.4) that at the isoener- 
getic level the ratioof frequencies is given by formula 

o,lo, = AeJ2n (3.5) 

where AT is the anglebywhichthebody turns about the axis of symmetry in time equal to the 
period of oscillations of angle 9 in unperturbed motion (Fig.3,a) 

(3.6) 

Let us show that angle Acp depends on I,. To do this, we investigate the behavior of 
AT as I,+ oc,i.e. 
axis of symmetry. 

when at the initial instant of time the body is rapidy rotating about the 

Let at t = 0, rp'= 8'= O,p,= I,, 8 = el. 

The equation h-&(e)= 0 is of the form 
For such initial date pv = I, ws 8, h - mgt(Q + 1,*/(2C). 

I t (COS e1 - 00s e)* 
* 2A sin* 0 + wf (0) = wf @I) (3.7) 

The angle e during the motion of the body varies between 8x and 
of Eq.(3.7) nearest to 13~. 

or, where Br is the root 

1, 
It can be represented in terms of series in negative powers of 

h-e,+-*+ 
Wmgpl)* (2 ctg e1 + h’lh) 

212’ +0(G) (3.8) 



26 

where p, and h'denote the values of function P (8) and its derivative when 8~8,. Formula 
(3.8) makes more accurate the estimate of !3, adduced in /l/. 

Using (3.8), from (2.3) we obtain the expansion for the period of oscillation of angle 0. 
and then the expression for the quantity Am, determined by the equality (3.6) 

(3.9) 

For any values of A and C and for any form of surface bounding the body It is always pos- 
sible by selecting the arbitrary angle 8x to obtain that the expression in brackets in (3.9) 
does not vanish. (An exotic case of p (A-j- m& sin(*PCtA'e= const is excluded). Thus AT is not 
reduced to constant value, but depends on I,, i.e. the conditionof nondegeneracyis satisfied. 

According to Kolmogorov's theorem /2,3/ the variables "action" are stable for small per- 
turbations of the Hamiltonian frl,. From this immediately follows that the projection of the 
body mom~t~ on the & axis for all t is close to the initial value at t = 0. For 0 < E< 
1 the phase pattern in plane 0,8' only slightly differs from the respective phase pattern 
of the unpexturbed problem. In particular, the range of variation of the angle of nutation 
varies only slightly, and, also, the character and dispositionof traces of the contact pornt 
P on the plane and on the surfade bounding the solid body. 
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